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Abstract. The goal of the present paper is to study an extension problem of a connected preserving (for
short, CP-) map between Khalimsky (K- for brevity, if there is no ambiguity) spaces. As a generalization of
a K-continuous map, for K-topological spaces the recent paper [13] develops a function sending connected
sets to connected ones (for brevity, an A-map: see Definition 3.1 in the present paper). Since this map
plays an important role in applied topology including digital topology, digital geometry and mathematical
morphology, the present paper studies an extension problem of a CP-map in terms of both an A-retract and
an A-isomorphism (see Example 5.2). Since K-topological spaces have been often used for studying digital
images, this extension problem can contribute to a certain areas of computer science and mathematical
morphology.

1. Introduction

In a topological category, it is well known that every continuous map sends connected spaces into
connected ones. However, a function mapping connected spaces into connected ones (for brevity, a CP-
map) need not be continuous. In both pure topology and applied topology, the study of a CP-map is
meaningful because a CP-map is broader than a continuous map and further, in applied topology CP-maps
can be more powerful than continuous maps. Thus the recent paper [13] develops an A-map as a CP-map
(see Definition 3.1 in the present paper). Besides it turns out that the function is a generalized map of both
a K-continuous map and a Khalimsky adjacency (KA- for brevity) map (see Theorem 3.3, Remark 3.4 and
Corollary 3.5). In applied topology as well as digital topology and digital geometry, this kind of approach
can be also interesting because an A-map can contribute to a certain area of computer science including
image analysis, image processing, computer graphics, mathematical morphology, etc.

Let N, Z and R be the sets of natural numbers, integers and real numbers, respectively. Consider the set
{p, q} in a K-topological space. Since the notions of connectedness and Khalimsky adjacency of the set are
proved to be equivalent [16], these notions have been often used for studying K-topological spaces. Hence
both a K-continuous map and a KA-map have been substantially used in K-topology [15]. Hereafter, if there
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is no danger of ambiguity we use the terminology K-space and K-adjacency instead of K-topological space and
Khalimsky adjacency, respectively.

Meanwhile, it turns out that both a K-continuous map and a KA-map have some limitations of geo-
metrical transformations of objects [13]. More precisely, a K-continuous map does not even include all
rotations of a K-space with 90◦ [13] (see the map q in Example 3.2(1) and Figure 1(a)) and cannot support
a translation with an odd vector, and a K-adjacency map does not allow a constant map (see also Remark
2.4(3)). Hence the recent paper [13] develops a new map preserving connectedness (see also Definition 3.1),
called an A-map, which is broader than both a K-continuous map and a KA-map. This means that none of
a KA-map, an A-map and a K-map can be equivalent to the other (see Theorems 3.3 and 3.10, and Corollary
3.11).

Let us now recall an extension problem well known in classical topology [2] because it is also very
important in applied topology including both digital topology and digital geometry [9, 20]. To be specific,
for a map f : X→ Y we say that a map F : X′ → Y is an extension of f if the restriction map F on X, for brevity
F|X, is equal to f , where X ⊂ X′. Since the study of K-spaces can contribute to digital topology and digital
geometry, we need to study an extension problem of a meaningful map between K-spaces. Motivated
by the extension problem in [2], the paper [20] studied an extension problem of a continuous function
from Khalimsky subspaces to the Khalimsky line. Furthermore, the recent paper [9] studied extension
problems of several types of continuities of given maps in [9]. Up to now, although an extension problem
has been studied with a continuous map between topological spaces, the present paper studies the issue
with CP-maps such as A-maps. To be specific, the paper has a goal of studying an extension of an A-map
and investigates its properties in terms of an A-retract. Since an A-map is broader than both a K-continuous
map and a KA-map (see Theorem 3.3), it is also different from several continuous maps in [7, 20]. Thus the
study of its extension problem has its own feature and further, it is different from those of [9, 20]. Indeed,
this approach is an expansion of those of [9, 20] because an A-map is a generalization of both a K-continuous
map and a KA-map. The paper has main results in Sections 4 and 5, and the rest of this paper proceeds as
follows:

Section 2 recalls basic notions of a K-space and K-adjacency, and their properties. Section 3 investigates
some properties of an A-map and an A-isomorphism. Section 4 studies some properties of a KA-map, a
KA-isomorphism and an A-isomorphism related to an A-retract. Besides, we compare an A-retract and a
k-retract in the computer topological category (or short CTC in [11]). Section 5 deals with an extension
problem of an A-map in terms of an A-retract. Section 6 concludes the paper with a summary and a
discussion of utilities of an extension problem of an A-map.

2. Khalimsky Adjacency and its Properties

Let us now recall basic notions and terminology for studying K-spaces. For two distinct points a
and b in Z let [a, b]Z = {n ∈ Z | a ≤ n ≤ b} [3]. The Khalimsky line topology on Z is induced by the set
{[2n− 1, 2n + 1]Z : n ∈ Z} [1] as a subbase (see also [15, 16]). Furthermore, the usual product topology on Zn

induced by (Z,T) is called the Khalimsky nD space and is denoted by (Zn,Tn). Indeed, (Zn,Tn) is a semi-T 1
2

space [4]. In the present paper each space X ⊂ Zn related to K-topology is considered to be a subspace
(X,Tn

X) induced by (Zn,Tn). Let us further recall some terms related to the structure of (Zn,Tn). A point
x = (x1, x2, ..., xn) ∈ Zn is called pure open if all coordinates are odd, and it is called pure closed if each of the
coordinates is even [16]. These two points are called simply pure points. The other points in Zn are called
mixed. In the spaces of Figures 1, 2, 3, 5, 6 and 7, a black jumbo dot means a pure open point and further, the
symbols � and •mean a pure closed point and a mixed point, respectively. We say that a point x is open if
SN(x) = {x}, where SN(x) means the smallest open neighborhood of x ∈ Zn.

To represent a K-adjacency neighbor, we need to recall the k-adjacency relation of Zn [5, 6] which is a
generalization of the digital k-connectivitiy on 2D and 3D digital spaces [19, 22], as follows:

For a natural number m, 1 ≤ m ≤ n, two distinct points

p = (p1, p2, · · · , pn) and q = (q1, q2, · · · , qn) ∈ Zn,



Sang-Eon Han / Filomat 30:1 (2016), 15–28 17

are k(m,n)-(k-, for brevity)adjacent if

at most m of their coordinates differs by ± 1, and all others coincide. (2.1)

The number of such points is [8, 10]

k := k(m,n) =

n−1∑
i=n−m

2n−iCn
i , where Cn

i =
n!

(n − i)! i!
. (2.2)

For consistency with the nomenclature “4-adjacent” and “8-adjacent” well established in the context of
2-dimensional integer grids, we will say that two points p, q ∈ Zn are k-adjacent if they satisfy the property
(2.1), i.e. k := k(m,n) of (2.2) [5] (see also [8, 10]).

We say that a k-path from x to y in X is a sequence (x = x0, x1, ..., xm−1, xm = y) in X such that each point xi
is k-adjacent to xi+1 for m ≥ 1 and 1 ≤ i ≤ m. The number m is called the length of this path [19]. If x0 = xm,
then the k-path is said to be closed. Besides, if a k-path (or a k-sequence) is called simple if it satisfies the
following: the points xi and x j of a k-path are k-adjacent if and only if | i − j | = 1, i, j ∈ [0,m]Z [19].

By using the adjacency of (2.2), we can represent the digital k-neighbor of p in Zn as the set Nk(p) :=
{q | p is k-adjacent to q} and further, N∗k(p) := Nk(p)∪ {p} [22]. More generally, for a digital space X ⊂ Zn with
a k-adjacency (X, k), the (digital) k-neighborhood of x0 ∈ X with radius ε is defined on X to be the following
subset of X [5] (see also [6]):

Nk(x0, ε) = {x ∈ X | lk(x0, x) ≤ ε} ∪ {x0}, (2.3)

where lk(x0, x) is the length of a shortest simple k-path from x0 to x and ε ∈ N.
For instance, for a set X ⊂ Zn Nk(x, 1) can be represented by N∗k(x) ∩ X [8]. To study K-adjacency of
(X,Tn

X) ⊂ (Zn,Tn), the present paper will often use Nk(p) and Nk(x0, ε), where p ∈ Zn and the number k is the
digital k-connectivity of Zn from (2.2).

In (Zn,Tn), we say that two distinct points x and y are (Khalimsky) adjacent if y ∈ SN(x) or x ∈ SN(y) [16],
where SN(p) stands for a smallest open neighborhood of the point p ∈ (Zn,Tn). More generally, for a point
p ∈ Zn A(p) is represented [13] as follows:

A(p) = {q | q ∈ SN(p) or p ∈ SN(q)} (2.4)

Example 2.1. [13, 21] We now characterize A(p), as follows:

If n = 1, then for a point p ∈ Z A(p) = {p − 1, p + 1}.
If n = 2, then for a point p ∈ Z2 {

A(p) := N4(p) if p is a mixed point, and
A(p) := N8(p) if p is a pure point.

If n ≥ 3 and p ∈ Zn is a pure point, then A(p) := N3n−1(p), and if a point p := (pi)i∈[1,n]Z ∈ Zn is a mixed point, then
according to the component of the given coordinates pi, A(p) can be represented by (2.4).

For a space (X,Tn
X) := X we now define the notion of a K-adjacency relation of a point p ∈ X as follows:

Definition 2.2. [13] For (X,Tn
X) := X put AX(p) := A(p)∩X. We say that two distinct points p, q ∈ X are K-adjacent

if q ∈ AX(p) or p ∈ AX(q).

In view of Definition 2.2, K-adjacency holds only the symmetric relation without the reflexive relation.
Hereafter, we consider (X,Tn

X) with the K-adjacency of Definition 2.2.
Let f : (X,Tn0

X ) := X → (Y,Tn1
Y ) := Y be a map. Then we can represent a KA-map at the point p ∈ X [13]

as follows: 
if for every x , x′ such that x′ ∈ SN(x) or x ∈ SN(x′)
it holds that f (x) , f (x′), and
one of the following is true f (x′) ∈ SN( f (x)) or f (x) ∈ SN( f (x′)).

 (2.5)
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If f is a KA-map at every point x ∈ X, then f is called a KA-map in X.
By using the K-adjacency, we define the following terminology:

Definition 2.3. [13] For a space (X,Tn
X) := X we define the following:

(1) Two distinct points x, y ∈ X are called KA-connected if there is an injective sequence (or path) (xi)i∈[0,m]Z on
X with {x0 = x, x1, ..., xm = y} such that xi and xi+1 are K-adjacent, i ∈ [0,m − 1]Z,m ≥ 1. This sequence is called a
KA-path. Furthermore, the number m is called the length of this KA-path. Furthermore, a KA-path is called a closed
KA-curve if x0 = xm.

(2) A simple KA-path on X is a KA-path such that xi and x j are K-adjacent if and only if | i − j | = 1.
Furthermore, we say that a simple closed KA-curve with m elements (xi)i∈[0,m]Z is a simple KA-path with x0 = xm
such that xi and x j are K-adjacent if and only if either j = i + 1(mod m) or i = j + 1(mod m),m ≥ 4.
Hereafter, let SCn,l

KA := (xi)i∈[0,l−1]Z denote a simple closed KA-curve with l elements in Zn,n ∈ N − {1}, l ≥ 4.

Although both a K-continuous map and a KA-map play important roles in studying spaces (X,Tn
X), as

we said in the previous part, they have some limitations of a transformation of objects as follows:

Remark 2.4. (1) Consider the self-map f : SCn,l
KA → SCn,l

KA given by f (ci) = ci+1(mod l), where SCn,l
KA := (ci)i∈[0,l]Z . Then

f need not be a K-continuous map [13].
(2) Let us consider the map 1 : (Z,T)→ (Z,T) given by 1(t) = t + (2n + 1),n ∈ Z which is a parallel translation

with an odd vector. Then 1 cannot be a K-continuous map [13].
(3) A KA-map does not allow a constant map with the following reason [13]: when we consider a K-adjacency

relation of two points p and q in Zn, we always assume that the given two points are distinct.

In view of Remark 2.4, we strongly need to develop another map which can overcome the limitations
suggested in Remark 2.4 (see Definition 3.1).

3. Some Properties of a KA-Map, a KA-Isomorphism, an A-Map and an A-Isomorphism

The recent paper [13] develops the notion of an A-map (see Definition 3.1 in the present paper) which is
broader than both a K-continuous map and a KA-map. Besides, it establishes the notion of an A-isomorphism
(see Definition 3.8 in the present paper) for K-spaces (X,Tn

X) := X. In relation to the establishment of an
A-map, we will use the following K-adjacency neighborhood of a point p ∈ X. For a point p ∈ X, we define
a KA-neighborhood of p to be the following set [21]

AX(p) ∪ {p} := ANX(p). (3.1)

Hereafter, we will use AN(p) instead of ANX(p) if there is no danger of ambiguity. Indeed, the notions of
an A-map and an A-isomorphism were developed in terms of AN(p) [13] as follows. For (X,Tn

X) := X and
each point x ∈ X, since for every x ∈ X there is always AN(x) ⊂ X, we establish a map preserving AN(x)
into AN( f (x)). In other words, this map sends K-connected sets containing a point x into those of f (x), i.e.
it is a kind of CP-map between K-spaces. Besides, it need not be a continuous map between K-spaces (see
the map q in Example 3.2(1) and Theorem 3.3), which can play an important role in studying K-spaces.

Definition 3.1. [13] For two spaces (X,Tn0
X ) := X and (Y,Tn1

Y ) := Y, we say that a function f : X→ Y is an A-map
at a point x ∈ X if

f (AN(x)) ⊂ AN( f (x)).

Furthermore, we say that a map f : X→ Y is an A-map if the map f is an A-map at every point x ∈ X.

Example 3.2. (1) in Figure 1(a), let us consider the spaces A := (ai)i∈[0,3]Z such that each ai is a mixed point,
B := (bi)i∈[0,3]Z and C := (ci)i∈[0,3]Z . Assume the two maps h : A → B given by h(ai) = bi, and j : A → C given by
j(ai) = ci, i ∈ [0, 3]Z. Then they are bijective A-maps because every point ai ∈ A, i ∈ [0, 3]Z has SN(ai) = {ai} = AN(ai).
But each of the inverse maps can be neither an A-map nor a K-continuous map. Meanwhile, consider the map q : B→ C
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given by q(bi) = ci, i ∈ [0, 3]Z. While q is an A-map, it cannot be a K-continuous map (see the points b0 and b2 in B)
[13].

(2) Considering the maps in Remark 2.4, we observe that an A-map has strong merits of studying digital images
from the viewpoint of digital geometry as follows: each of the following maps is an A-map.

(2 − 1) f : SCn,l
KA → SCn,l

KA given by f (ci) = ci+1(mod l), where SCn,l
KA := (ci)i∈[0,l]Z ;

(2 − 2) 1 : (Z,T)→ (Z,T) given by 1(t) = t + n,n ∈ Z ; and
(2 − 3) c : (X,Tn0

X )→ (Y,Tn1
Y ) which is a constant map.

(a)

3b

1a
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3a 1b
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Figure 1: Explanation of a K-continuous map, an A-map and an A-isomorphism

Hereafter, the present paper will deal with only connected K-spaces.
Using spaces (X,Tn

X) := X and A-maps, we can establish a K-adjacency category denoted by KAC [13] in
terms of the following two sets.{

• A set of spaces (X,Tn
X) := X as objects of KAC denoted by Ob(KAC); and

• A set of A -maps between all pairs of elements in Ob(KAC) as morphisms.

Let KTC denote the K-topological category consisting of the following two sets [7]:{
• A set of spaces (X,Tn

X) := X as objects of KTC denoted by Ob(KTC); and
• A set of K -continuous maps between all pairs of elements in Ob(KTC) as morphisms.

The following theorem and corollary show that an A-map is a generalization of both a K-continuous
map and a KA-map.

Theorem 3.3. [13] Let f : (X,Tn0
X ) := X→ (Y,Tn1

Y ) := Y be a map.
A K-continuous map implies an A-map. But the converse does not hold.

By Theorem 3.3, we can observe the following:
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Remark 3.4. Let f : (X,Tn0
X ) := X → (Y,Tn1

Y ) := Y be a map. Although the given spaces X and Y are K-connected,
an A-map does not imply a K-continuous map. In order to verify this assertion, consider the spaces B and C in
Figure 1(a). Then, as discussed in Example 3.2(1), they are K-connected. Consider the map q : B → C given by
q(bi) = ci, i ∈ [0, 3]Z in Figure 1(a) so that q is an A-map. But it cannot be a K-continuous map.

In view of Remark 2.4 (3), we obtain the following:

Corollary 3.5. Let f : (X,Tn0
X ) := X→ (Y,Tn1

Y ) := Y be a map. A KA-map implies an A-map. But the converse does
not hold.

By Theorem 3.3, Remark 3.4, Corollary 3.5 and the property (2.5), we conclude that none of a KA-map,
an A-map and a K-map can be equivalent to the other.

Definition 3.6. We say that f : (X,Tn0
X ) := X → (Y,Tn1

Y ) := Y is a KA-isomorphism if f is a bijective KA-map and
f−1 is a KA-map.

To study simple closed K-continuous curves in Zn, we need to recall a K-homeomorphism as follows:

Definition 3.7. [15] For two spaces (X,Tn0
X ) := X and (Y,Tn1

Y ) := Y, a map h : X→ Y is called a K-homeomorphism
if h is a K-continuous bijection, and h−1 : Y→ X is K-continuous.

In (Zn,Tn) we say that a simple closed K-curve with l elements in Zn is a path (xi)i∈[0,l−1]Z ⊂ Zn, l ≥ 4 that
is K-homeomorphic to a quotient space of a Khalimsky line interval [a, b]Z in terms of the identification of
the only two end points a and b [18], where both the numbers a and b in [a, b]Z are even numbers or odd
numbers. We denote it by SCn,l

K := (xi)i∈[0,l−1]Z .
Thus we can say that a K-topological circle in Zn is a finite space in Zn which is locally K-homeomorphic

to the Khalimsky line (Z,T).
Using an A-map, we establish the following notion:

Definition 3.8. [13] For two spaces (X,Tn0
X ) := X and (Y,Tn1

Y ) := Y, a map h : X→ Y is called an A-isomorphism if
h is a bijective A-map (for brevity, A-bijection) and if h−1 : Y→ X is an A-map.

Example 3.9. (1) The map q : B→ C in Example 3.2(1) is an A-isomorphism.
(2) Consider the spaces D and E in Figure 1(b). Then they cannot be A-isomorphic to each other. More precisely,

every point di ∈ D has AN(di) = {di−1(mod 8), di, di+1(mod 8)}, i ∈ [0, 7]Z. But the points ei ∈ E, i ∈ {0, 2, 4, 6} have
AN(e0) = {e6, e7, e0, e1, e2}, AN(e2) = {e0, e1, e2, e3, e4}, etc. Thus, owing to the four points e0, e2, e4 and e6, the spaces
D and E cannot be A-isomorphic to each other. More precisely, while there is a bijective A-map i : D → E given by
i(di) = ei, i ∈ [0, 7]Z, the inverse map of i cannot be an A-map (see the points e0, e2, e4 and e6).

In Definitions 3.6, 3.7 and 3.8, we denote by X ≈KA Y, X ≈K Y and X ≈A Y a KA-isomorphism, a
K-homeomorphism and an A-isomorphism, respectively.

According to Theorem 3.3 and Remark 3.4, we obtain the following:

Theorem 3.10. [13] Let f : (X,Tn0
X ) := X → (Y,Tn1

Y ) := Y be a map. If f is a K-homeomorphism, then it is an
A-isomorphism. But the converse does not hold.

For instance, the map q : B → C in Example 3.2 shows that an A-isomorphism need not imply a K-
homeomorphism. While an A-isomorphism supports a constant map, a KA-isomorphism cannot comprise
a constant map. Thus we obtain the following:

Corollary 3.11. Let f : (X,Tn0
X ) := X → (Y,Tn1

Y ) := Y be a map. If f is a KA-isomorphism, then it is an
A-isomorphism. But the converse does not hold.

Comparing an A-map with both a K-continuous map and a KA-map, according to Theorem 3.3, Remark
3.4 and Corollary 3.5 (resp. Theorem 3.10 and Corollary 3.11), we can observe some utilities of an A-map
(resp. an A-isomorphism).
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4. Some Properties of an A-Retract Related to an A-Isomorphism

Compared with the several continuous maps in [7, 20], since an A-map has strong merits of studying
K-spaces, an extension problem of an A-map can contribute to the study of K-spaces. Based on several
continuities of maps in [7], some properties of several retracts have been investigated in [2, 3, 9, 20].
However, as discussed in Section 3, since KAC has its own features and benefits of studying K-spaces, we
need to establish the notion of an A-retraction, as follows:

Definition 4.1. [13] In KAC we say that an A-map r : (X′,Tn
X′ )→ (X,Tn

X) is an A-retraction if
(1) (X,Tn

X) is a subspace of (X′,Tn
X′ ) and

(2) r(a) = a for all a ∈ (X,Tn
X).

Then we say that (X,Tn
X) is an A-retract of (X′,Tn

X′ ). Furthermore, we say that the point a ∈ X′\X is A-retractable.

In view of Definition 4.1, it is clear that an A-retract holds the reflexivity and the transitivity because
this retract was formulated in terms of an A-map instead of a K-map or a KA-map. Unlike the A-retraction
of Definition 4.1, a retraction in KTC was established [9], as follows: we say that a K-continuous map
r : (X′,Tn

X′ )→ (X,Tn
X) is a K-retraction [9] if

(1) (X,Tn
X) is a subspace of (X′,Tn

X′ ), and
(2) r(a) = a for all a ∈ (X,Tn

X).
Then we say that (X,Tn

X) is a K-retract of (X′,Tn
X′ ). Furthermore, we say that the point a ∈ X′ \ X is

K-retractable.
By Theorem 3.3 and Remark 3.4, it turns out that a K-retraction implies an A-retraction. But the converse

does not hold. Thus the notion of an A-retract can be useful for studying K-spaces, as follows:

Example 4.2. Consider the space X′ := {xi| i ∈ [0, 14]Z} in Figure 2(a) and assume X = X′\{x4, x6, x7, x8, x10, x12, x13}.
Assume the map r : X′ → X given by r(x4) = x3, r({x6, x7}) = {x5}, r({x8, x10, x12}) = {x9}, r(x13) = x11 and
r(xi) = xi, i ∈ [0, 14]Z \ {4, 6, 7, 8, 10, 12, 13}. Then the map r is an A-retraction from X′ to X. But r cannot be a
K-retraction because it cannot be a K-continuous map at the point x7. Thus we speak out that an A-retraction is more
flexible than a K-retraction.
Similarly, we can observe that the description in Figure 2(b) is an A-retract which is not a K-retract.

1x
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6x5x

3x
4x

7x

8x
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10x13x
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14x
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11x
14x
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(a) (b)

Figure 2: Configuration of an A-retract

To study a digital retract, the recent paper [9] studied a special kind of retract for studying K-spaces
(see Definition 4.7). Indeed, the retract of Definition 4.7 is partially related to the present A-retract (see
Definition 4.7 and Remark 4.9). It is represented by a special kind of continuity of Definition 4.4 and the
neighborhood of Definition 4.3. Thus we need to review these notions and compare an A-retract with the
retract of Definition 4.7. In view of the continuity of Definition 4.4 and the retract of Definition 4.7, we need
to recall a Khalimsky topological k-neighborhood which can be used for establishing another continuity
for K-spaces instead of both a K-continuous map and an A-map. Consider a space (X,Tn

X) with a digital
k-connectivity which is denoted by (X, k,Tn

X) := Xn,k [11].
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Definition 4.3. [5] (see also [7]) Consider a space Xn,k := X, x, y ∈ X, and ε ∈ N.
(1) A subset V of X is called a Khalimsky topological neighborhood of x if there exists the smallest open set Ox ∈ Tn

X
such that x ∈ Ox ⊆ V, as usual.

(2) If a digital k-neighborhood Nk(x, ε) is a K-topological neighborhood of x in (X,Tn
X), then this set is called a

Khalimsky topological k-neighborhood of x with radius ε and we use the notation N∗k(x, ε).

According to Definition 4.3, in Xn,3n−1 it is clear that

N∗3n−1(x, 1) is equal to N3n−1(x, 1) as a set. (4.1)

In view of Remark 2.4, to study the spaces Xn,k, we will use another continuity relating to the digital
connectivity which is different from the digital continuity in [22], as follows:

Definition 4.4. [5](see also [7, 11]) For two spaces Xn0,k0 := X and Yn1,k1 := Y we say that a function f : X→ Y is
(k0, k1)-continuous at a point x ∈ X if f (N∗k0

(x, r)) ⊂ N∗k1
( f (x), s), where the number r is the least element of N such

that N∗k0
(x, r) contains an open set including the point x and s is the least element of N such that N∗k1

( f (x), s) contains
an open set including the point f (x).
Furthermore, we say that a map f : X → Y is (k0, k1)-continuous if the map f is (k0, k1)-continuous at every point
x ∈ X.

Let us consider the computer topological category, denoted by CTC, consisting of the following two sets
[7]: {

• A set of K -connected spaces Xn,k as objects of CTC; and
• A set of (k0, k1) -continuous maps of Definition 4.4 as morphisms.

While the papers [7, 9] studied the category CTC with Ob(CTC) including K-connected or K-disconnected
spaces, the present paper deals with only K-connected spaces.

To compare a (k0, k1)-continuous map in CTC with an A-map, let us recall A(p) and AN(p) of (2.2) and
(3.1). Based on this review, in Figure 3(a) consider a mixed point p ∈ Z2. Then we can observe that each
point t in N8(p) \ AN(p) is a mixed point (for this, see the point t in Figure 3(a)) and further, there is a pure
point r, e.g. x2 or x3 in AN(p) such that t is K-adjacent to r and t ∈ N4(r).
As another example, consider a mixed point in Z3 such as p and q in (b) and (c) of Figure 3, respectively.
Then every point t ∈ N26(p) \ AN(p) (resp. t ∈ N26(q) \ AN(q)) is a mixed point (see the point t in (b) and (c)
of Figure 3) and further, there is a pure point r ∈ AN(p), e.g. x8, x10 (resp. r ∈ AN(q)) such that t and r are
K-adjacent to each other and t ∈ N6(r).
In general, we can easily obtain the following property:

Lemma 4.5. For a point p ∈ Zn,n ∈ {2, 3} if p is a mixed point, then each point t ∈ N3n−1(p) \ AN(p) is a mixed
point and further, there is a pure point r ∈ AN(p) such that t and r are K-adjacent to each other and t ∈ N2n(r).

Reminding (2.2) and (4.1), for a pure point let us now compare a (k0, k1)-continuous map in CTC with an
A-map (see Figure 3). In the following theorem, since the assertion is trivial in the case of the dimensional
Kahlilmsky line, we study it for nD K-spaces, n ∈ {2, 3}.

Theorem 4.6. (1) Assume a map f : Xn0,k0 := X → Yn1,k1 := Y in CTC, where ni ∈ {2, 3}, i ∈ {0, 1}. Let
ki = 3ni − 1, i ∈ {0, 1}, and let p and f (p) be pure points in both X and Y, respectively. If f is a (3n0 − 1, 3n1 − 1)-
continuous map at p, then f is an A-map at p. The converse also holds.

In (1), if the hypothesis of the pure points p and f (p) is omitted, then the assertion need not hold. More precisely,
we obtain the following:
(2) Let p be a pure point and f (p) a mixed point. If f is (3n0 −1, 3n1 −1)-continuous at p, then f need not be an A-map
at p. Conversely, if f is an A-map at p, then f is (3n0 − 1, 3n1 − 1)-continuous at p.
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Figure 3: Comparison between an A-map and an 8-continuous map in Z2 and Z3

(3) Let p be a mixed point and f (p) a pure point. If f is (3n0 − 1, 3n1 − 1)-continuous at p, then f is an A-map at
p. Conversely, if f is an A-map at p, then f need not be (3n0 − 1, 3n1 − 1)-continuous at p.

(4) Let p be a mixed point and f (p) a mixed point. If f is (3n0 − 1, 3n1 − 1)-continuous at p, then f need not be an
A-map at p. Conversely, if f is an A-map at p, then f need not be (3n0 − 1, 3n1 − 1)-continuous at p either.

Proof: (1) Since the given spaces X and Y are K-connected, each pure point x ∈ X (resp. y ∈ Y) has
N∗3n0−1(x, 1) ⊂ X (resp. N∗3n1−1(y, 1) ⊂ Y) such that N∗3n0−1(x, 1) = AN(x) (resp. N∗3n1−1(y, 1) = AN(y)). Thus, for
the pure points p and f (p) a (3n0 − 1, 3n1 − 1)-continuous map f : X→ Y at p is equivalent to an A-map at p
because AN(p) = N∗3n0−1(p, 1) and AN( f (p)) = N∗3n1−1( f (p), 1).

(2) With the hypothesis, although AN(p) = N∗3n0−1(p, 1), by (3.1) we obtain that AN( f (p)) need not be
equal to N∗3n1−1( f (p), 1) and AN( f (p)) ⊂ N∗3n1−1( f (p), 1). Then we may have a point r ∈ AN(p) such that
f (r) ∈ N∗3n1−1( f (p), 1) \AN( f (p)) instead of f (r) ∈ AN( f (p), which implies that the (3n0 − 1, 3n1 − 1)-continuity
of f at p need not support f as an A-map at p.
Conversely, with the hypothesis, we prove that f is (3n0 − 1, 3n1 − 1)-continuous at p. Since f is an A-map at
the pure point p and f (p) is a mixed point, we can observe that (see Example 2.1)

AN( f (p)) ⊂ N∗3n1−1( f (p), 1). (4.2)

Owing to (4.2), the A-map property of f and the fact that AN(p) = N∗3n0−1(p, 1), we obtain the following:

f (AN(p)) = f (N∗3n0−1(p, 1)) ⊂ AN( f (p)) ⊂ N∗3n1−1( f (p), 1), (4.3)
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which implies that the map f is also a (3n0 − 1, 3n1 − 1)-continuous map at p.

(3) Since the point p is a mixed point and f (p) is a pure point, we can observe that

AN(p) ⊂ N∗3n0−1(p, 1) and AN( f (p)) = N∗3n1−1( f (p), 1).

By (3.1) we obtain that AN(p) need not be equal to N∗3n0−1(p, 1). Owing to the (3n0 − 1, 3n1 − 1)-continuity of f
at p, since f (N∗3n0−1(p, 1)) ⊂ N∗3n1−1( f (p), 1), we obviously obtain that f (AN(p)) ⊂ N∗3n1−1( f (p), 1), which implies
that f is an A-map at p.
Conversely, take a point t ∈ N∗3n0−1(p, 1) \ AN(p). By Lemma 4.5, the point t is a mixed point and further,
there is a pure point r ∈ AN(p) which is K-adjacent to t and t ∈ N2n0 (r, 1). Then f (t) need not be an element
of N∗3n1−1( f (p), 1). Thus f cannot be a (3n0 − 1, 3n1 − 1)-continuous map at p.
For instance, in Figure 3(d) consider the A-map f : X → Y given by f (xi) = yi, i ∈ [0, 7]Z. Let us now
examine if f is an 8-continuous map at the mixed point x4 ∈ X. Take a point x2 or x6 in N∗8(x4, 1) \ AN(x4).
For convenience, let us investigate only the point x2. Indeed, the point x2 is a mixed point and further, by
Lemma 4.5, there is a pure point x3 ∈ AN(x4) which is K-adjacent to x2 and x2 ∈ N4(x3, 1). Then we can
observe that f (x2) < N∗8( f (x4), 1), which implies that f cannot be an 8-continuous map at x4.

(4) Since the points p and f (p) are mixed points, AN(p) ⊂ N∗3n0−1(p, 1) and AN( f (p)) ⊂ N∗3n1−1( f (p), 1).
Owing to the (3n0 − 1, 3n1 − 1)-continuity of f at p, although f (N∗3n0−1(p, 1)) ⊂ N∗3n1−1( f (p), 1), we obviously
obtain that f (AN(p)) need not be a subset of AN( f (p)). Indeed, owing to the (3n0 − 1, 3n1 − 1)-continuity of f
at p, the map f may map a point x ∈ AN(p) into

f (x) ∈ N∗3n1−1( f (p), 1) \ AN( f (p)),

which implies that f is not an A-map at p.
Conversely, from the hypothesis although we have f (AN(p)) ⊂ AN( f (p)), it need not support the following
property:

f (N∗3n0−1(p, 1)) ⊂ N∗3n1−1( f (p), 1).

To be specific, take a point t ∈ N∗3n0−1(x, 1) \AN(x). Then the point t is a mixed point and further, by Lemma
4.5, there is a pure point r ∈ AN(x) which is K-adjacent to t and t ∈ N2n0 (r, 1). Then f (t) need not be an
element of N∗3n1−1( f (x), 1), which means that f cannot be a (3n0 − 1, 3n1 − 1)-continuous map at x.
For instance, in Figure 3(d) consider the A-map f1 : X → Y1 given by f1(xi) = yi, i ∈ [0, 7]Z. Let us
now examine if the given map f1 is an 8-continuous map at the mixed point x4 ∈ X. Take a point
x2 ∈ N∗8(x4, 1) \ AN(x4). By Lemma 4.5, for the mixed point x2 there is a pure point x3 ∈ AN(x4) that is
K-adjacent to x and x2 ∈ N4(x3, 1). Then f1(x2) = y2 < N∗8( f1(x4), 1). Thus the map f1 need not be an
8-continuous map at x4.
In view of this example, we can observe that an A-map need not be a (3n0 − 1, 3n1 − 1)-continuous map at
the mixed point x. �

The assertion of Theorem 4.6 can be similarly considered in nD K-spaces, n ≥ 4.
By using the method similar to that of Definition 4.1, in CTC we obtain the following:

Definition 4.7. [9] In CTC, we say that a k-continuous map r : X′n,k → Xn,k is a k-retraction if
(1) Xn,k ⊂ X′n,k, and
(2) r(x) = x for all x ∈ Xn,k.
Then we say that Xn,k is a k-retract of X′n,k.

Example 4.8. In Figure 5, assume the map r : X′ → X given by r(x3) = x2, r(x1) = x0, r(x9) = x8, r(x7) = x6 and
r(xi) = xi, i ∈ {0, 2, 4, 5, 6, 8}. Then X is an 8-retract of X′ in CTC. However, this map r cannot be a 4-retraction in
CTC.

In view of Theorem 4.6(1) and (4), depending on a point x ∈ Xn,k in CTC, we can obtain a relation
between an A-retract and a (3n

− 1)-retract as follows:
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Figure 4: Comparison between a (3n0 − 1, 3n1 − 1)-continuous map and an A-map

Remark 4.9. (1) At a pure point x ∈ Xn,k, a (3n
− 1)-retraction in CTC is equivalent to an A-retract.

(2) At a mixed point x ∈ Xn,k, none of a (3n
− 1)-retraction in CTC and an A-retract implies to the other.

In terms of the following remark, we can observe some difference between the present k-retract in CTC
and the A-retract in KAC, where k , 3n

− 1.

Remark 4.10. Consider the K-connected space X′ := {xi | i ∈ [0, 9]Z} in Figure 5. Let us compare a k-retract in
CTC with an A-retract at x0 ∈ X′ in Example 4.8 (see Figure 5). Recall that the smallest open set of x0, denoted
by SN(x0), is the set {x0, x1, x2, x5, x8, x9}. Thus there is no K-topological 4-neighborhood of x0 in X′, denoted by
N∗4(x0, ε), because there is no N4(x0, ε) containing SN(x0). Thus, in CTC we cannot consider a 4-retraction at x0.
However, in this case we can consider an A-retraction from X′ to X in terms of the following mapping: r : X′ → X
given by r({x1, x3}) = {x2}, r(x7) = x6, r(x9) = x0, r(xi) = xi, i ∈ {0, 2, 4, 5, 6, 8}.

In relation to the A-isomorphic property of an A-retract, we obtain the following:
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Figure 5: Explanation of an 8-retract in CTC as an example
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Proposition 4.11. Let (X,Tn0
X ) be an A-retract of (X′,Tn0

X′ ) and let h : (X′,Tn0
X′ ) := X′ → (Y,Tn1

Y ) := Y be an
A-isomorphism. Then h(X) is an A-retract of Y.

Proof: Let r : X′ → X be an A-retraction. Then h◦ r◦h−1 : Y→ h(X) is a A-retraction because the composition
of A-maps is also an A-map. �

Example 4.12. Assume X = X′ \ {x5, x6, x7} (see Figure 6). Then we observe that X is an A-retract of X′ in such a
way: Assume the map r : X′ → X given by r({x6, x7}) = {x8}, r(x5) = x4 and r(xi) = xi, i ∈ [0, 10]Z \ {5, 6, 7}. Then
X is an A-retract of X′. Consider an A-isomorphism h : X′ → Y defined by h(xi) = yi, i ∈ [1, 10]Z. Then h(X) is an
A-retract of Y, where h(X) = Y \ {y5, y6, y7}.
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Figure 6: Some property of an A-isomorphism related to an A-retract

5. An Extension Problem of an A-Map

In classical topology [2], we recall the following: let (X′,T′) be a topological space and (X,T) a subspace
of (X′,T′). Then (X,T) is a retract of (X′,T′) if and only if every continuous map f : (X,T) → (Y,T) has a
continuous map F : X′ → Y such that the restriction map on X F|X = f for any (Y,T) [2]. Consequently, in
KTC every K-continuous map f : (X,TX)→ (Y,Tn

Y) has an extension F : (X′,TX′ )→ (Y,Tn
Y) such that F|X = f

for any (Y,Tn
Y) if and only if X is a K-retraction of X′.

Unlike this extension property, as discussed in Theorem 3.3 and Example 4.8, since an A-map is an expansion
of both a K-continuous map and a A-map and further, it includes a non-continuous map between K-spaces,
an extension problem of an A-map has its intrinsic feature (see Theorem 5.1). Thus we need to study an
extension problem of an A-map using an A-retract.

Theorem 5.1. In KAC, (X,Tn
X) := X is an A-retract of (X′,Tn

X′ ) := X′ if and only if every A-map f : (X,Tn
X) →

(Y,Tn1
Y ) := Y has an A-map F : X′ → Y such that F|X = f for any Y.

Proof: If X is an A-retract of X′, then let 1 : X′ → X such that 1X ⊂ 1 and note that for each f : X → Y,
f = 1X ◦ f ⊂ 1 ◦ f : X′ → Y.

Conversely, if each f : X→ Y has an extension F : X′ → Y for every Y, then as a special case, 1X : X→ X
does. Namely, there is a map 1 : X′ → X such that 1X ⊂ 1. Thus X is an A-retract of X′. �
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Figure 7: Non-existence of an extension of an A-map

Example 5.2. Consider the spaces X = {xi | i ∈ [1, 8]Z}, X′ = X ∪ {p} and Y = {yi | i ∈ [1, 8]Z} (see Figure 7). Then
they are K-connected.
First, let us prove that X is not an A-retract of X′. Consider the point p ∈ X′. Then we obtain AN(p) = X′. Suppose
that X is an A-retract of X′. If we assume that the point p is mapped into a certain point xi ∈ X in terms of the
A-retraction from X′ into X, then AN(p) should be mapped into AN(xi). However, there is no element xi ∈ X such
that AN(xi) = X′, which the mapping is contrary to an A-retract of X′ onto X.
Second, assume the map 1 : (X,T3

X) → (Y,T3
Y) defined by 1(xi) = yi, i ∈ [1, 8]Z so that 1 is an A-map. Then there is

no extension of 1 into the map G : (X′,T3
X′ )→ (Y,T3

Y) such that G|X = 1 because X is not an A-retract of X′.

6. Summary and Further Works

Using both an A-isomorphism and an A-retract, we have studied an extension problem of a CP-map.
Since a (k0, k1)-continuous map in CTC is also another non-continuous map between K-spaces, we have
compared an A-map and a (k0, k1)-continuous map in CTC. Compared with an extension problems of K-
continuity in [20] and several continuities in computer topology in [9], it turns out that the present extension
problem can be substantially used for studying K-spaces. As discussed in Theorem 3.3, Remark 3.4, Corol-
lary 3.5 and the property (2.5), since none of a KA-map, an A-map and a K-map can be equivalent to the
other and further, the present extension problem is an expansion of an extension problem of a K-continuous
map. Moreover, compared with the extension problems of several continuities of [9], the present research
can also contribute to the study of K-spaces and mathematical morphology. As further works, by using the
digitizing methods in the papers [12, 14], we can a new type of thinning method. Furthermore, by using
the pasting method in the paper [17], we can study pasting properties of A-maps.
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